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Machine Learning: TPZ

e TPZ (Trees for Photo-Z) is a
supervised machine learning code

e Prediction trees and random
forest

e Incorporate measurements errors
and deals with missing values

e Ancillary information: expected
errors, attribute ranking and others

Carrasco Kind & Brunner 2013a

http://lcdm.astro.illinois.edu/research /TPZ . html
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Machine Learning: SOM

e SOM (Self Organized Map) is a

unsupervised machine learning
algorithm

Weights matrix

Input layer

Neuron 1 /

e Competitive learning to Y e a] bl i
represent data conserving topology

e 2D maps and Random Atlas

e Framework inherited from TPZ

Carrasco Kind & Brunner, MNRAS submitted
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Machine Learning: Others UIUC efforts T l

e Random Naive Bayes (used for spam filter) to produce
photo-z priors (Carrasco Kind & Brunner, 2013b)

e Sparse representation and dictionary learning for PDF storage
(Carrasco Kind, Brunner & Ching, in prep.)

e Ensemble learning and Bayesian network for photo-z
estimation and outlier rejection (Carrasco Kind & Brunner, in
prep.)

e Machine Learning for Strong Lensing identification
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Systematics & LSS: Star/Galaxy separation
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Challenging for fainter magnitudes
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Systematics & LSS: Star/Galaxy separation in APS

Late/early type ratio and gal. latiude
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Contamination of starts and gal. latiude
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Systematics & LSS: ACF case

e S/G separation
e Pixelisation

e Density fluctuations in
stripes
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e Seeing variation
e Reddening variation

e Flag variation

Wang, Brunner & Dolence 2013
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Systematics & LSS: Star/Galaxy separation using ML

Prpy(G) >95.00 Psou(G) >95.00
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TPZ and SOM provide probability for being a galaxy

Compare with coadd stripe 82 classification
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Systematics & LSS: Photo-z outliers

TEST SET

[ No outliers
[ Outliers
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Likelihood ratio for outliers using features from all three
techniques similar to Gorecki A., et al. 2013
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Systematics: Photo-z PDF storage

LSS

LSST-DESC, Dec 4t 2013



Systematics: Photo-z PDF storage

Multi-Gaussan fit

Sparse representation
techniques

Dictionary learning
(Carrasco Kind, Brunner & Ching, in prep.)
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Systematics: Photo-z PDF storage

Carrasco Kind, Brunner & Ching, in prep.
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Differences less than 1% using Multi Gaussian or sparse
representation

Sparse representation saves ~ 50% of disk space!
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Conclusions T

x Machine leraning powerful tool
xEnsemble and deep learning even better
x Systematics are important but can be addressed

* Sparse representation and dictionary learning saves 50% in PDF
storage without lossing accuracy
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EXTRA SLIDES
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Photo-z PDF application: N(z)

N (z) distribution of
gaIaX|eS, Slmp|e yet _ —  Fz)mean
important feature —  Pz)stacked

— Fz)mode

Stacked PDF
produces better
distribution than

taken the mean of
the PDF

Very important for
clustering and weak
lensing studies
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Photo-z PDF application: N(z)

Z spec
Stacked PDF
PDF mode
PDF mean
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Photo-z PDF application: Angular Power Spectrum

e The angular power spectrum (APS) contains important
information about the matter density field

e 2D projection of P(k) using N (z)in the kernel

e Constrains cosmological models. Could be used to resolve BAOs

e Use photo-z PDF In overdensities

Nin Z2
qurvey § P’L] (Z)dz é
' 21 D
5 = J =)
5 Niot Z9 %
Q / P;i(z)dz ‘ l
j Z1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

redshift
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Photo-z PDF application: C, and w(0) 1 l

Limber approximation with no redshift-space distortions and
scale-independent bias b:

e €(€+1)b2/dz¢2(z)H(z)P(€+1/2 Z)

27 AN WA\

CAMB and HALOFIT for non linear P(k, 2)
¢(z) is the galaxy distribution N(z)

Fitting using Monte Carlo Markov Chain methods

X*(ap) =) (InCy — InC})CyFopCor (In Cyr — InCy)
bb’
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Photo-z PDF application: C; and w(6)
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Example application of photo-z PDF

& i
Incorporating PDF

on clustering
measurements

Problems of using

mode of photo-z
PDF

Extend to other
. measurements e

Myers, White & Ball 2009
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Photometric redshift PDFs using TPZ

We use TPZ to

generate photo-z for |
a” ga|aXieS. 104857.11

100,00 for training

~ 43 million PDFS, no cuts on zConf

73904.79

5 magnitudes only
~ 0.17 sec per PDF

Store 43 million PDFs
for analysis

58428.59]

27476.19

12000.00¢

No outlier removal
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Photometric redshift PDFs using TPZ

Metrics
(AZ — Zphot T Zspec)

< AN =10.0088
< |Az| >= 0.089
AN = BTAA

~ 43 million PDFS, no cuts on zConf
120333.34

104857.1%

89380.98;

73904.79

58428.59]

o1as = 0.1109
ogs = 0.0885 | 27476.19
frac > 20 = 0.0531 7 o8 0 05 10 1z I 12000.00
frac > 30 = 0.0207
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Also in redshift shells

photo-z PDF 10% prob cut

We consider only
PDF with at least
10% of its area
iInside redshift shell

N(z) and
overdensities from
stacked PDFs

0.6 0.8 1.0
redshift
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